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Extremality and the Global Markov Property II: 
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We give a condition on a Gibbs measure for an attractive Markov specification, 
which assures extremality and the global Markov property. As an example of 
application we consider the class of attractive Markov specifications defined on 
a compact configuration space over a two-dimensional lattice by the interaction 
Hamiltonians (assumed to have a finite set of periodic ground configurations) 
satisfying Peierl's condition. We prove that each extremal Gibbs measure for 
such a specification, at sufficiently low temperature, has the global Markov 
property. 

KEY WORDS: Lattice spin systems with attractive force; muttiphase region; 
Gibbs measures; extremality; Markov property. 

I N T R O D U C T I O N  

In the author ' s  paper, ~12) the criteria on the Gibbs  measures for extremali ty 

and the global Markov  proper ty  have been given in the case of at tractive 
Markov local specifications on a lattice with arbi t rary  single-spin state 

space. Using one of these criteria, the global Markov  proper ty  has been 
proven for F K G - m a x i m a l  Gibbs  measures, which define the Eucl idean field 
theories on a lattice. 

In  the present  paper  (on the basis of the ideas of (12)) we formulate  
another  na tura l  cri terion for (extremality and)  the global Markov  
property, which gives the possibility of proving the global Markov  
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property also for non-FKG-maximal  Gibbs measures (for a Markov 
attractive specification). We apply this criterion to the systems with attrac- 
tive short range interactions which fulfil Peierl's condition (3'5'7'8'm~ on a 
two-dimensional lattice. We show that in sufficiently low temperature the 
non-FKG-maximal  Gibbs measures (which exist if temperature is suf- 
ficiently close to zero) also have the global Markov property. It is expected 
that the method of proof used in the example can be applicable in the 
important case of Euclidean fields on a lattice at low temperature regions, 
when the phase transitions can occur, since the theory of the w o r k s  (3'5'7'8A~ 

for Euclidean fields exists (see Imbrie, Ref. 25 in Ref. 11). 
The organization of the paper is as follows: In Section 1 we give the 

abstract formulation of our criterion for any attractive and Markov 
specification on a lattice with arbitrary single-spin state space. In Sections 2 
and 3 we apply the example to the class of systems of finite spins on a two- 
dimensional lattice. 

1. Let L be a countable set, L,~ the family of its finite subsets, and 5r 
a countable base of L,e, i.e., 

2'o:={A=6S, n 6 N A ,  cA=+I, UA~=I_} . (1) 

For A c L  we write A~-I_\A. To each point i~l_ we associate a set 
c?{i}" ~ 1_ of the nearest neighbors of i. We define the boundary c3A of a set 
A c I_  by 

OA :=(i~A:A~c~O{i}~ r (25) (2) 

For any i el_, let ( Y i , ~ )  be a Borel set Y i c N  with the cr algebra ~ of 
Borel subsets of Yi. 

Let (f2, S)  := Xi~ a (Yi, ~-). For  Q c 1_ by SQ we denote the o algebra 
generated by the sets of the form Xi~A Ai x Xi~A, Yi, where A e L~, A ___ Q, 
and A ~ e ~ .  By definition, X=SL. The o algebra at infinity is defined by 

:= N (3) 
A ~ S  

For Q c L and co s f2, the restriction of co to Q is coe := {co,: i E Q }. 
On (f2, S)  we have natural measurable, directed upward and 

downward order • defined as follows 

co, co' ~ g2: co ~< co' ~ Vie L coi~< co; (4) 

We define 

(co a co'), := min(coi, co;); (co V co')i := max(co/, co;) (5) 
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We say that a function F: s ~ N is increasing if 

m <~ m ~ F( co ) ~ F( c~' ) (6) 

For A c 1_, s~' A (respectively, ~A)  denotes the set of bounded 2~ 
measurable (and increasing, respectively) functions. If A = [ the superscript 
A will be omitted. We distinguish the subsets of nonnegative functions by 
adding + as a superscript to the sets of functions considered (e.g., 
~ ,  d~ +). 

By ~ / w e  denote the set of probability measures on (t?, X). For  # e ~# 
and a measurable function F, by #(F) or simply #F  we denote the expec- 
tation value of F with a measure #. The conditional expectation of F with 
respect to a a algebra Z" c X, associated to a measure # e J [ ,  is denoted by 
E,(FI S'). For F, G~ L2(#) we write 

#(F, G) := #(F.  G) - #(F) #(G) (7) 

From our assumptions about the order ~< it follows (see, e.g., I-9]) 
that U~  Nt~ (and so U~' d~A +) is a determining class for J ,  i.e., for any 
#, # ' e ~ '  and A e 5  ~ 

VFe~4 ] #(F)=# ' (F)~#I~.=# '  l~. (8) 

Hence, two measures given as the limits of sequences of measures indexed 
by A ~ So: # := limbo #A and #' := limbo #} are equal if for any F e  U ~  AT 
(or U~ ATA + ) we have 

lim I#AF--#'AFI = 0  (8') 
~o 

In the set .W we define the F K G  order by 

#<-..VKG#' e > V F ~ T  #(F)<.#'(F) (9) 

For # e ~#, if 

V A ~ S  VF~dA E~(FIZA<)e.ss~,~A, (10) 

we say that/2 has the local Markov property, and if 

VQcI_ VF~ ~/o E,(FI s E od,~, (11) 

we say that # has the global Markov property and we write # e GMP.  The 
global Markov property implies the local one, but the converse is not true 
in general (see, e.g., Ref. 4 and 11). 
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A local specification (2'91 is a family g : =  {EA~}A ~ S ,  which consists of 
functions 

EA~: 0 X 2:--' [0, 1] (12) 
such that 

(i) VA �9 5~, Vco �9 s E]c(' ) �9 ~ and the restriction of this measure to 2: a, 
coincides with the point measure ~5~ 

(ii) VA �9 5~ VF�9  sur E'A~(F) �9 ~f~A c 

(iii) The compatibility condition 

A1, A2 �9 ~/~: A1 c A 2 =~ EA~EA~ = EA~ (13) 

A local specification g = {EAc}A e S is called attractive, if 

V A � 9  V F � 9 1 6 2  T EA~(F)�9162 (14) 

or, equivalently 

Markov, if 

gT'~o .( p~o' (14') 

V A � 9  V F � 9  E'A4F)�9 (15) 

The set of Gibbs measures for g is defined by 

G(o w) : =  {kt � 9  'q'A �9 o~(' ~EA,,=tt } (16) 

The set of its extremal points (i.e., the set of these Gibbs measures for g, 
which cannot be represented as a convex linear combination of other 
elements from G(g))  is denoted by ~G(~). 

If ~ is attractive, then for 11, fi �9 G(g)  such that 

/z = lim/~'EAe and fi = lim kt"EA,. ( 17 ) 
So So 

for some #', i t " � 9  J / ,  #' ~<v~:~ #" we have 

# ~<v~:~/~ (18) 

In the special case /~ '=  6~, i t "=  ~ with co, (5 �9 s co % o5 we have 

~o ~ (19) EAC'~FK6 hm A" EAc ~FKG EAC and so lim ~o _< �9 E ~ 
So 

If, moreover, ~ is compact on ((2, ~V) in the sense (see, e.g., Ref. 1) that for 
each o)�9163 {E]c}A~s is compact and G(g)  is compact (in the weak 
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topology in d/'), or more generally, S is compact with respect to some 
~r in the sense that for each # e  J T, {#Eac}A~rZ is compact and 
G(g)c~d7 is compact (in the relative topology in Jr then, under the 
additional assumption in the second case, that 

V#', #" e J/7 3#' A #", #' v #" e~#i 

#t A #it ~FKG #', #11 ~FKG #' V #" 
(20) 

there exist unique FKG-maximal  measures #+, # -  e G(d~ i.e. 

V # e G ( g )  (respectively, V#eG(d~)m ~ )  # ~FKG#~FKG/,/+ (21) 

(Let us note that if ~#+, #_ e G(g) FKG-maximal  then G(g) is compact.) 
If d ~ is Markov then, from definitions (10) and (15), any p e G(d ~) has 

the local Markov property, but it can happen that #q}GMP. (4'11~ It is 
known (see, e.g., Ref. 12) that for d ~ compact attractive and Markov we 
have for FKG-maximal measures # +, # _ e G(g) that 

#+ ,  #_ e G M P  (22) 

We now formulate a condition which gives # E G(d ~ c~ G M P  for C com- 
pact, attractive, and Markov also for non-FKG-maximal  Gibbs measures. 

In Section 3 we give the examples for our results, namely, that there 
are Gibbs measures extremal and # # •  which have the global Markov 
property. 

With the above notations and definitions we have 

Proposi t ion 1. Let d ~ be an attractive specification on a standard 
Borel space (12, 2 )  with a partial (measurable, directed upward and 
downward) order ~<. Let # E G(d~ 

If there exists co ~ e/2, such that 

lim # E ] c "  ~o = l i m  ~,,Eac o ( 2 3 )  
Yo 5% 

(where co is the integration variable) then 

and if ~ is Markov then 

# e G M P  [] 

Remarks. In the proof we do not use any other special features of an 
order ~ besides those mentioned in the formulation of Proposition 1. We 
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also do not use explicitly [I_ as a lattice. What we need only is the possibility 
of restriction to a subset of ~_ and "patching together" two configurations 
from f2. Note also that the compactness is not used in above proposition. 
The condition (23) is the condition on a Gibbs measure. 

This proposition is the corollary from Ref. 12, Proposition 2; however, 
for the reader's convenience, we write the full proof in the case under con- 
sideration. 

ProoL (Extremality) For any F e d  ~ and for each met2  we have 
(from attractivity of g)  

and 

Hence 

E'~A~A ,oO(F ) < E'er(F) <~ E'~, v "~ (24) 

E~,." ~~ <. E],(F) ~< E]c v '~~ (25) 

o )  ~ E c o  v _ _  09 A l im# [E~ <~lim#[ AC ~"(F) EA,. ~~ = 0  (26) 

so there is a subsequence 50" c 5~ such that 

lim E~,.( F)  = " '~~ hm EAc(F ) -- # (F)  (27) 

for #-a.a., co e t2. 
Because ~4 t determines ~ ,  

lira E~ =/~, #-a.e. (28) 

which is the necessary and sufficient condition for /ze~?G(d ~ (see, e.g., 
Refs. 2, and 9). 

The proof of the global Markov property (GMP) is based on the 
following simple lemma, which is proven. (4/ 

I_emma 1. Let, for any Q ~ [1_, A e ~_, and ~o~ f2 
o 

~o  ~ •  

#Q,o~O.A(') :=/~E(AQ~ e)f(" ) (29) 

If for any Q c k  

then 

lim #~,,oo ~ = # ( 3 0 )  
~o 

/~e GMP [] 
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To continue the proof of GMP:  For  any F e  d r ,  A c A e ~ we have 

o , o 

I~o.o~O A F -  I ,E~AQ~O~f(F ) = I z E ' ~ E " A ~  Q)~176 (31) 

(where explicitly indicated the variables of integration co and co'). 
From the attractivity and the compatibility condition of C we have 

,o A ~O~ F ~ _ EO~ ,, o~OE~O'ec • (~ ~176 F )  <~ U ~ " " oy c• ~~ A O9 ~ '  Q Q(F] EA~ t J - -  A c ( A ~ Q )  A c ~ A c ~ Q ) C t  ) 

, o 
<~ F~o v~215 <. ,o ,, ~O(F ) (32) 

~ A C ~ ( A  c~ O)C ~ , - - ]  ~ EAC 

Hence, using (23) and the fact that U J  Sr determines, M{ we obtain 

lira #OJ,A =/ t  (33) 
Leo 

for any Q c l_, which together with Lemma 1 gives 

# e G M P  [] 

R e m a r k .  The condition (23) is fulfilled for FKG-maximal  Gibbs 
measures (see Appendix). Note, that under the conditions 3co~ s 

( i )  # = lim E J A c .% 

(ii) /~ = lira , ,U ~ v ~,o ~,o A~ or # = lim #E'~,.  v 
Leo Leo 

one can prove extremality (see Appendix), but not G M P  (without any 
additional condition on co ~ as, for example, in Ref. 12, Proposition 1). [] 

Condition (23) reflects the idea of the existence of a ground con- 
figuration coo of the infinite system in the state of thermodynamical 
balance. (1~ If we have a system in a pure phase at sufficiently low tem- 
perature, then all its typical configurations co fluctuate around coo and can 
differ considerably from co ~ only in the regions (islands) of small diameters, 
so co/x coo and co v coo are also typical configurations (for almost all co) for 
a system in the same pure phase. (In the high temperature region we have 
rapid decay of correlations and so weak dependence of the state of a sub- 
system in a finite volume from the outside configurations of the rest of the 
system. Condition (23) can also be fulfilled in this case.) 

In practice, we construct a Gibbs measure as the limit of a sequence of 
the measures E ~176 for some ground configuration co ~ Moreover, it is fie- B e  

quently possible to prove the uniform in volume A e 5 ~ cluster property for 
measures E ~ .  



694 Zegarlihski 

We use the above facts in order to give an example of application of 
the criterion formulated in Proposition 1. 

2. Let 0_ have a metric d(',  -). We denote diam A := supx, y~ A d(x, y). 
Let dp ~ Jg be a free measure defined by 

dp = @ dpf (34) 

where dp~ are the probability measures on ( Y~, ~) ,  i ~ n_. For any A c n_ let 

ClpA = | clp, (35) 
i ~ A  

be the corresponding probability measure on X~ A (Y~, ~)- 
Let 4; := {4;x}x~ ~ ,  where 4;x are Z x  measurable real functions, be an 

interaction potential. We will assume that 4; is of finite range, i.e. 

3r o, l ~ r o < OO if diam X > r o , then 4; x - O (36) 

We also assume that 4;xe sr and define 

ll4;ll :=sup ~ 114;xll~ (37) 

i ~ X  

Let for A ~ 

uA(co) := Z 4;~(co) (38) 
X ~ c ~  

X c~ A r ~25 

We define the local specifications g~ = {EA~}A~ f by 

E~,(" ) := 6~ IzA, [-~ d p A ( e - ~ "  )] (39) 
[ ~ dpA(e -~UA) J 

where fie N+ and 6~ Iz~,. is the restriction of point measures 5~ to Z 3 .  
If we define the set of nearest neighbors (?{i}c of i ~  ~ by 

~{i}~ := { je  l_: d(i, j ) ~  ro} (40) 

then we have from definitions (2) and (15) that d~ given by (39) are 
Markov. 

If 4; is an attractive potential, i.e. 

Vco, cS~g2 V X ~ S  4;x(C9 v &)+4;x((O A c5)~<4;x(co)+~bx(Cb ) (41) 

then Ne is attractive. (9) 
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From now on we restrict ourselves to D_=2 2, d(i , j )=([i l- j~[+ 
1i2-j21). We assume that 2"o consists of A e 2 "  for which [0A~l- - 
O(]A[ 1/2) = Old(O, (?A~)] (where IXI means the number of points in J fe  2"). 
For  FEStAl, Gear we denote d(F,G)=d(A1,A2)=inf,~A~j~A2d(i,j). 
(For a given F, G we take here the smallest possible sets A~ and A2.) Let A~ 
be the cube with center at a point i e  ~L and a side of length r = 2s, s e N. 
For a finite union of such disjoint cubes 

r =  U {Aik, k =  1 ..... z } , ~  

we write i ~ F if and only if A~ c F and [FI will denote the number of cubes 
in F. Let l-r= [U A~: i =  (rkl, rkz), kl, k2eZ}. 

We may and do assume that any element of 2'0 is a subset of L~. 
Let Z ~ be a characteristic function of a subset: A i c X / ~ , Y #  and 

co ~ la,.~A~ for some co~ We write 15~- 1 _)~o and 

Z} := I-[ 5~o, Zr := ]71 )~,[dist(i,j)>~r;i, j eF]  (42) 
i ~ F  i e F  

With the above notation we have 

P r o p o s i t i o n  2. Let oee be local attractive and Markov 
specifications on (f2, ZT) given by (38) with II~bH < oo and range of d equal 
to ro <<. r. Let the following conditions be fulfilled 

(i) Let # E G(E~) and for some co~ ~2 

/~ = lim E]~C: 

(ii) There is rio > 0, that if fl > flo then 

ftXv ~ C I e - 2~/~j/-i (43) 

with CI, e > 0 constants independent of ft. 

(iii) For cosXi~LrAi=-A and Ae2,o, the measures U~', have uniform (in 
volume and boundary conditions) cluster property, i.e., for A~, 
A 2 e Y ,  with d(Al, A2) sufficiently big and any FedAI, GeSZA~ 

JE~ G)J <~ IIFJPo~ IPGI[o~ C2 e-m(~)d(F'G) (44) 

where Cz > 0 is a constant independent of/3. Assume furthermore 
that 

m(/~) ~ oo 
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Then we have 

p ~ ~G(Cp) c~ G M P  

Proof. Without restriction of generality we can and do assume that 
A, e Lz o are the squares with center at the point i = 0 and side of length n- r, 
r >>. ro (ro is the range of interaction). Then 0A~ can be covered by 4n + 4 
disjoint cubes of side r. Let F e  zag~, A s 5 ~ We have, for A ~ A E oU 

I~ IE~,J ~176 - E~~ 
ECO v = ~, ktZ~ A' ~176 

F c c~A c 

(45) 
\ F ~ O A  c Fcc3A c / 

]F]<N(A)  IFI>~N(A) 

where the summation is going over all possible families F consisting of 
cubes, and N(A) is a natural number dependent on A, which will be chosen 
suitably later on. 

Let us first estimate the second sum on the right-hand side of (45). 
Using (ii) we have 

lEA< o o~ v EA<(F)I 
F ~  ~A 

IFI/> N(A) 

~<2 I]FLI~ ~ p)/r-G<2 Ilrll~ Y~ ) C~(e-=Z) g (46) 
F ~ OA c K = N(A ) 

If'] ~> N(A ) 

where 
1 

M(A) = -~ 10A<I (47) 

Now, for any q > 0 

~ N (  M - N )  qK N!K!  M N M 

~ q N Q  M )  ( l + q )  M - N  ( 4 8 )  

We want to choose N =  [M/a] + 1 (where [x ]  is the biggest integer less 
than or equal to x) for some a > 1. In this case, remembering that M will 
be arbitrarily large, we can use Stirling's formula and get the estimate 

(I l) = 1 1491 
+1  
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From that 

<<. [q" ae" (1 + q ) " -  l] M'" q ( a -  
1)a 

M 1/2 

We see that if we choose a > 1 such that 

q . a . e ( l + q )  ~ ~<<.1 

then the sum (48) will go to zero as M T oo. 

(50) 

(5]) 

Because a < e  a-1 for a >  1, qae(1 + q ) , - i  <q(1 + q )  ale(1 +q)]~,  and 
(51) will be fulfilled if we take 

We will simply choose 

. ln(1 + q) + Iln ql 
a ~  (52) 

ln(1 + q ) +  1 

a= �89  Ilnq[ (53) 

because in our case q = e-2~.  Therefore 

a = ~fl (54) 

and 

[9] N(A)  = + 1 = L r2~p d + 1 (55) 

The second sum on the right-hand side of (45) will go to zero as A 1" []-. Let 
us now estimate the first sum on the right-hand side of (45) with N ( A )  
given by (55). 

Let, for 

F c  0A c, F* c 3A (56) 

F* consisting of disjoint cubes A with sides of length r such that 

VA c r * ,  d ( A , / ]  ~ r (57) 

Moreover, let us for co e s define coAe A by 

coA i,~,= {co v coo I~, co v coo I,<.eA~ (58) 
coo I~, otherwise 

822/43/3-4-20 
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We have 

E,  o ,, o~O(F ) = E~ [e--f[UA('~176 UA(~OAla~X')]F( " )] 
AC E ~ e -  fie uA(o~ ,, o~o la~ ~ ) - uA(~ A IA~ x. )] 

= E ~ ] ( F )  + E ~ J [ e  aevA(o, v ~o [ACX.)_ UA((DA [ A C X . ) ]  ' F(" )] 
03A (D ~ E A ~ ( e - ~ [ u a ( ~  ,, IAcx.)--UA(oaiAcx.)]) 

(59) 

Using (iii) we have 

~< sup (e - feud(+ ~ o>o L ~ ) -  u~(o~ ,+.x~)l) 
O),r 

x IIFII~ C2 e=m(f)d(yl'oA) (60) 

because the first function on the left-hand side of (60) is in 2$r and F~  d~.  
Because 

sup I U A ( C O V C O ~ 2 1 5  I (61) 
O,),o)A,fD 

where F is the union of cubes A i c S A  c in which co v co ~ [a,r we have 
(using 59, 60, and 61) 

co o e123 I[,;bl[ r 2 IFI E~A~" ~~176 -- E~~ <- IE~(F) - EAc(F)I + 

x ]]FI]+ C2e  m(f) d(Tl,OA) (62) 

Remembering that we have 

FISACl7 16ACl 
I/'1 < / r2 P J + 1 i.e. Irl 

we can estimate the second term in (62) by 

[]FI[ co  C'2 e(48r2/~) I1r d(O,OA c) X e m(f) d(O,OA c) (63) 

with a constant C; < oo (independent of 3). Because by assumption (iii) 

m ( f l )  ~ oo 

there exists rio such that 

48r 2 
v fi > flo Ot 

I[~11 <m(fl) (64) 
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For  such values of  the inverse t empera tu re  3 the sequence (63) goes to zero 
as A 1" ~_ ( th rough 500). 

We now prove  that  the first term on the r ight -hand side of (62) goes to 
zero as A 1" L In  fact, we can prove  more,  namely,  that  for any  co A, c5 A s A 
and F E U A.e ~ ,5~r A, 

~o A 
[ E A ~ ( F ) -  E ~ ( F ) I  ~ 0 

Let {(9 A'' e A }Ic~=A; \FI/r2 be the sequence such that  co A'~ = co ~ 
coA'l~ CO A and for any ~, co A'~+~ differs f rom co A'~ exactly on the one 
cube A, and co A'' -4 co A'' + 1 

We have 

But 

( [ a A C \ F [ / r  2) 1 

E ~  -- E~~  ~ A t  t A ~t ) ~ E 
l = o  

ojA,t + [ ~oA,t EA~ (r) = E. ,  (F)-~ 

and using (iii) 

o~AJ ,'- 1 r IE~,. (F) -  E~, (F)l (65) 

AC L ~ 

E ~ O ~ , , t e - ~ [  uA~oA,, + ~ IA c x" ) --  UAo~ A'' [A~ x" )3 
A c \ 

(66) 

E]~"(e-~Eua(~ A,' +l lAcx- ) -  UA((oA.' 'AC X'71) 

~< e 12~1'~1j [[F[[ ~ Cze-m(~)d(~.OAI (67) 

(where F e  d ~ ,  ,4 e 5~ 
F r o m  (66) and (67) we obta in  

[ E ~ J ( F ) - E 3 ; ( F ) [  ~< IIFI[ o~ C3 I~ACl e -m(~)d(~176 (68) 

where C3 is a constant  independent  of A. 
If we go with A T ~- th rough  500 the left-hand side of (68) goes to zero. 

This ends the p roof  that  

lim #E% ~ ~o _- lim E ~ (69) 
<=C~ 2 P  o 

because the set UA ~ ~ SdA determines ./~. 
The  second case 

(xt A 6 9  ~ l i r a  ~EAc ~o = l i m  EA,. = ~ ( 7 0 )  
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can be proved analogously, so from Proposition 1 we conclude that 

# = lim E]~ �9 0G(C) c~ G M P  

Remarks. We see that without the attractivity assumption on d ~ the 
conditions (i)-(iii) imply # �9 OG(g). Also, the formulation of Proposition 2 
admits various modifications. In particular, let us note that the fact that 
is a lattice is completely nonessential. [] 

3. Let Yi= Yo, i�9 v be a finite set. 

A configuration co �9 f2 is called periodic if there exists n �9 N such that 
Vx�9 coi+x=coi, i�9 

For  configurations co, 05 �9 f2 we write co = 05 (a.s.) if and only if co, = 05i 
for almost all i �9 0_, i.e., beyond a finite set of the lattice points. 

We define, for co = 05 (a.s.) the relative Hamiltonian 

H(co [ (5) := lim [UA(CO) -- UA(&)] (71) 
~o 

where U a ( )  is defined in (38) in terms of a finite range potential ~b. We 
assume that qt is periodic, i.e. 

Vx e 7/,~ VXe~ ~bx+x(co +x) = ~bx(co) (72) 

where (co + x)i= coi + x, n � 9  N. 
We say that a configuration co~149 s is the ground configuration for the 

relative Hamiltonian H( '  I ") if and only if 

Vco�9 co=co~ (a . s . )~  H(colco~ (73) 

Let g(H) be the set of periodic ground configurations. Let us assume that 
g(H) is a nonempty finite set. Let N O be the common period for the 
Hamiltonian H (i.e., forth) and for all elements of g(H). Let r >  
max(No, ro), where ro is the range of ~b, and let A7 be the r cube, i.e., the 
cube with center in i � 9  ~_ and the side of length r. The boundary of con- 
figuration co �9 f2 is the set 

&3(O := U { Ar:(O I~ #coq I~7, Vcoq�9 (74) 
i~[]_ 

Peierl"s condition. A Hamiltonian H fulfils Peierl's condition if and 
only if 

3 e > 0  Vco=coq(a.s.)H(colcoq))el~co] (75) 

where (1} q �9 g( H). 
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From the works of Refs. [5, 3, 7, 8] (see also Ref. 10) we have 

Proposit ion 3. Let d~ be given by (39) with a periodic potential ~b 
for which the relative Hamiltonian H has a finite set g ( H )  of periodic 
ground configurations. If H satisfies Peierl's condition (75) then there is a 
/~o > 0 such that for each/~ >/3o the measures 

]~q : =  lim E ~ ,  co q ~ g(H) (76) 
~o 

exist. For these measures the condition (ii) of Proposition 2 is fulfilled with 
some constants C1 and c~, and with 

)~i(coi) = 1 - 6oj, (o)i) (77) 

(i.e., for measure #q we take the sets Aj:={(D q ]~j~}). Moreover, the 
measures E]~ have the uniform cluster property (44) With 

m(/?) ~ oo [] 

R o m a r k .  It is known from above references that #q~ 3G(o~p). 

The above proposition gives us the following: 

C o r o l l a r y  1. Let g~ fulfil all the conditions of Proposition 3 on a 
two-dimensional lattice. If g~ are attractive and Markov, then there is 
flo > 0 such that for each/~ > ]~o 

#q ~ 0G(E~) n G M P  

(where #q are given by 76). [] 

The simplest example of a lattice model with attractive interaction 
which possesses more than two extremal Gibbs measures and so has a non- 
empty set of non-FKG-maximal Gibbs measures is Pott's model. In this 
model the single-spin state space Yi ( is  k) consists of n ~> 3 points and the 
interaction potential is given by 

q~ := otherwise 

It is known that at sufficiently low temperatures /~-t there exist in this 
model at least n extremal Gibbs measures. (1~ 

For other examples of lattice models with attractive interaction which 
possess many phases. (6) 
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APPENDIX 

The alternative version of Proposition 1. 

P r o p o s i t i o n  A1. Let g be an attractive specification on a standard 
Borel space (f2, X) with a partial (measurable, directed upward and 
downward) order ~ .  

Let for / tEG(g)  the following conditions hold: There exists co~ 
such that 

(i) # = hm EA+ 
s  

(ii) lim �9 E ~ v ~~ ,u Ae 
c~  o 

then 

= kt or l im I I E ] ,  ^ ~,o _ - #  
(A1) 

/t e 0G(g) 

and if g is Markov and both conditions in (ii) hold, 

/ ~ G M P  

Proof .  (Extremality) We consider only the first case in (ii), since for 
the second case the proofs are similar. 

Let F~  d +, then 

l i m / ~  E ~ v ~ ~  ~176 A c F - -  EA,.F ] = lim m" 'E~Acv coo F _  E ~~ 
~eo ~eo 

~o o = lim r-"E~Acv ~+F-- lim EA, F 
Z o  Z o  

= o ( a 2 )  

Hence, since ~ *  is determining class 

lim E ~ ~ ~oo A" =/t,  /~-a.e. (A2) 

for a subsequence Z "  c Y'o. 
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But now for any F ~  .M r 

lim E]?' ~~176 F) >~ lim E~ F) (A3) 

for a subsequence Lf" c ~ 'o  and #-a.a., ~o ~ s (the limits on the right-hand 
side of A3 exist from the martingale convergence theorem), so in particular 
for F~  ~ t ,  F>~ 0 using (ii) we obtain 

#(F) >~ lim E]c(F), #-a.e. (A4) 

From that we conclude 

/~(F) = lira E]c(F), #-a.e. (A5) 
~o 

and since ~/ t+  (the set of nonnegative elements in .4  t) is the determining 
class for d ,  we have 

which means (z9~ 

# = lim E]c, #-a.e. (A6) 

# E 0G(d ~) [] 

We now show that condition (23) can be fulfilled by FKG-maxima l  Gibbs 
measures for 5 ~ (compact). 

P r o p o s i t i o n  A2. Under  the conditions of Proposit ion l, if C is 
compact,  then the FKG-max ima l  Gibbs measures #_+ fulfill the condition 
(23). [] 

Proof. First let us assume that (2 is compact  and co -+ are its maximal 
elements with respect to the order ~ .  Then 

#+ = lira E]~? (h7) 
c.LP o 

Let us consider only the case of the measure /~+,  since the second case is 
similar. Because we have 

CO V dO + = d O  + , 09 A (.0 + = 0 , )  (A8) 

Therefore, from (A7) the condition (23) is fulfilled. 
Let us now consider the general case when ~2 ~ Ir L has no maximal 

elements (with respect to %). As previously, we also fix our attention on 
the case of/~+ measure. 
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Let  co + be an e lement  of D such that  

l im # + {co ~ s'2: Vie  A c coi ~< co,.+ } = 1 (A9) 
So 

(such e lement  exists!). Since ~ is c o m p a c t  we have also 

#+  = lira EAc (A10) 
so 

Deno t ing  by )~AL the charac ter i s t ic  funct ion of  the set 

{co e Q: V i e A C c o i < c o  + } ( A l l )  

we have for any  F E  ~4 

# + E ~  E ~ ? ( F ) + # + ( I \ L A L ) E ~ Z C O + ( F  ) (A12) 

Hence,  using (A9) and  (A10), we have 

+ ~ c o +  = # +  (A13) lira # E A, 
S o  

O n  the o ther  hand  

+ co A co + EA~ ( F ) = # + Z A ~ E ~ ( F ) + # + ( I \ Z A ~ ) E C O A ~ ' ~ §  F A~ 

# + ( F ) + # + ( 1  o ~ +  = \ Z A , ) [ E A c  (F)  -- E ]~(F) ]  (A14) 

Using  (A9) we conc lude  

-~- Oj A 6 0 +  + limg EAc = #  (A15) 
So 

(We have used tha t  d is de te rmin ing  the class for J//L.) [] 
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